Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.250
Filtrar
1.
Pest Manag Sci ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656697

RESUMEN

BACKGROUND: In agricultural pest management, especially in combatting the invasive red imported fire ant (RIFA, Solenopsis invicta), significant challenges emerge due to the constraints of solely depending on chemical insecticides or entomopathogenic nematodes (EPNs). The utilization of chemical insecticides carries environmental and ecological hazards, whereas EPNs, when applied independently, might not offer the immediate effectiveness necessary for adequate RIFA suppression. Acknowledging these hurdles, our study investigates a synergistic method that integrates EPNs with chemical insecticides, aiming to fulfill the urgent demand for more efficient and environmentally friendly pest control solutions. RESULTS: Our evaluation focused on the interaction between the highly pathogenic Steinernema riobrave 7-12 EPN strain and prevalent insecticides, specifically beta-cypermethrin and a mixture of bifenthrin and clothianidin, applied at highly diluted recommended concentrations. The findings revealed a notable increase in RIFA mortality rates when EPNs and these insecticides were used together, outperforming the results achieved with each method individually. Remarkably, this enhanced efficacy was especially evident at lower concentrations of the bifenthrin-clothianidin mixture, indicating a valuable approach to minimizing reliance on chemical insecticides in agriculture. Furthermore, the high survival rates of EPNs alongside the tested insecticides indicate their compatibility and potential for sustained use in integrated pest management programs. CONCLUSION: Our research underscores the effectiveness of merging EPNs with chemical insecticides as a powerful and sustainable strategy for RIFA management. This combined approach not only meets the immediate challenges of pest control in agricultural settings but also supports wider environmental objectives by reducing the dependency on chemical insecticides. This article is protected by copyright. All rights reserved.

2.
Plant Physiol Biochem ; 210: 108627, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38663265

RESUMEN

Sporidiobolus pararoseus Y16, a species of significant ecological importance, has distinctive physiological and biological regulatory systems that aid in its survival and environmental adaptation. The goal of this investigation was to understand the complex interactions between physiological and molecular mechanisms in pear fruits as induced by S. pararoseus Y16. The study investigated the use of S. pararoseus Y16 and ascorbic acid (VC) in combination in controlling blue mold decay in pears via physiological and transcriptomic approach. The study results showed that treatment of S. pararoseus Y16 with 150 µg/mL VC reduced pears blue mold disease incidence from 43% to 11%. Furthermore, the combination of S. pararoseus Y16 and VC significantly inhibited mycelia growth and spore germination of Penicillium expansum in the pear's wounds. The pre-treatment did not impair post-harvest qualities of pear fruit but increased antioxidant enzyme activity specifically polyphenol oxidase (PPO), peroxidase (POD), catalase (CAT) activities as well as phenylalanine ammonia-lyase (PAL) enzyme activity. The transcriptome analysis further uncovered 395 differentially expressed genes (DEGs) and pathways involved in defense mechanisms and disease resistance. Notable pathways of the DEGs include plant-pathogen interaction, tyrosine metabolism, and hormone signal transduction pathways. The integrative approach with both physiological and transcriptomic tools to investigate postharvest pathology in pear fruits with clarification on how S. pararoseus Y16 enhanced with VC, improved gene expression for disease defense, and create alternative controls strategies for managing postharvest diseases.

3.
Sci Rep ; 14(1): 9535, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664543

RESUMEN

One of the challenges in augmentative biological control programs is the definition of releasing strategy for natural enemies, especially when macro-organisms are involved. Important information about the density of insects to be released and frequency of releases usually requires a great number of experiments, which implies time and space that are not always readily available. In order to provide science-based responses for these questions, computational models offer an in silico option to simulate different biocontrol agent releasing scenarios. This allows decision-makers to focus their efforts to more feasible options. The major insect pest in sugarcane crops is the sugarcane borer Diatraea saccharalis, which can be managed using the egg parasitoid Trichogramma galloi. The current strategy consists in releasing 50,000 insects per hectare for each release, in three weekly releases. Here, we present a simulation model to check whether this releasing strategy is optimal against the sugarcane borer. A sensitive analysis revealed that the population of the pest is more affected by the number of releases rather than by the density of parasitoids released. Only the number of releases demonstrated an ability to drive the population curve of the pest towards a negative growth. For example, releasing a total of 600,000 insects per hectare in three releases led to a lower pest control efficacy that releasing only 250,000 insects per hectare in five releases. A higher number of releases covers a wider range of time, increasing the likelihood of releasing parasitoids at the correct time given that the egg stage is short. Based on these results, it is suggested that, if modifications to the releasing strategy are desired, increasing the number of releases from 3 to 5 at weekly intervals is most likely preferable.


Asunto(s)
Simulación por Computador , Control Biológico de Vectores , Saccharum , Animales , Saccharum/parasitología , Control Biológico de Vectores/métodos , Mariposas Nocturnas/parasitología , Himenópteros/fisiología , Lepidópteros/fisiología , Lepidópteros/parasitología
4.
Front Plant Sci ; 15: 1392637, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38654899

RESUMEN

Botrytis cinerea is the causal agent of gray mold, which affects a wide variety of plant species. Chemical agents have been used to prevent the disease caused by this pathogenic fungus. However, their toxicity and reduced efficacy have encouraged the development of new biological control alternatives. Recent studies have shown that bacteria isolated from amphibian skin display antifungal activity against plant pathogens. However, the mechanisms by which these bacteria act to reduce the effects of B. cinerea are still unclear. From a diverse collection of amphibian skin bacteria, three proved effective in inhibiting the development of B. cinerea under in vitro conditions. Additionally, the individual application of each bacterium on the model plant Arabidopsis thaliana, Solanum lycopersicum and post-harvest blueberries significantly reduced the disease caused by B. cinerea. To understand the effect of bacteria on the host plant, we analyzed the transcriptomic profile of A. thaliana in the presence of the bacterium C32I and the fungus B. cinerea, revealing transcriptional regulation of defense-related hormonal pathways. Our study shows that bacteria from the amphibian skin can counteract the activity of B. cinerea by regulating the plant transcriptional responses.

5.
Front Plant Sci ; 15: 1381018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660441

RESUMEN

Autolysins are endogenous cell wall degrading enzymes (CWDEs) in bacteria that remodel the peptidoglycan layer of its own cell wall. In the Bacillus subtilis genome, at least 35 autolysin genes have been identified. However, the study of their roles in bacterial physiology has been hampered by their complexity and functional redundancy. B. subtilis GLB191 is an effective biocontrol strain against grape downy mildew disease, the biocontrol effect of which results from both direct effect against the pathogen and stimulation of the plant defense. In this study, we show that the autolysin N-acetylglucosaminidase LytD, a major autolysin of vegetative growth in B. subtilis, plays an important role in its biocontrol activity against grape downy mildew. Disruption of lytD resulted in reduced suppression of the pathogen Plasmopara viticola and stimulation of the plant defense. LytD is also shown to affect the biofilm formation and colonization of B. subtilis on grape leaves. This is the first report that demonstrates the role of an endogenous CWDE in suppressing plant disease infection of a biological control microorganism. These findings not only expand our knowledge on the biological function of autolysins but also provide a new target to promote the biocontrol activity of B. subtilis.

6.
BioTech (Basel) ; 13(2)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38651488

RESUMEN

In response to the escalating demand for sustainable agricultural methodologies, the utilization of microbial volatile organic compounds (VOCs) as antagonists against phytopathogens has emerged as a viable eco-friendly alternative. Microbial volatiles exhibit rapid diffusion rates, facilitating prompt chemical interactions. Moreover, microorganisms possess the capacity to emit volatiles constitutively, as well as in response to biological interactions and environmental stimuli. In addition to volatile compounds, these bacteria demonstrate the ability to produce soluble metabolites with antifungal properties, such as APE Vf, pyoverdin, and fragin. In this study, we identified two Pseudomonas strains (BJa3 and MCal1) capable of inhibiting the in vitro mycelial growth of the phytopathogenic fungus Aspergillus flavus, which serves as the causal agent of diseases in sugarcane and maize. Utilizing GC/MS analysis, we detected 47 distinct VOCs which were produced by these bacterial strains. Notably, certain volatile compounds, including 1-heptoxydecane and tridecan-2-one, emerged as primary candidates for inhibiting fungal growth. These compounds belong to essential chemical classes previously documented for their antifungal activity, while others represent novel molecules. Furthermore, examination via confocal microscopy unveiled significant morphological alterations, particularly in the cell wall, of mycelia exposed to VOCs emitted by both Pseudomonas species. These findings underscore the potential of the identified BJa3 and MCal1 Pseudomonas strains as promising agents for fungal biocontrol in agricultural crops.

7.
Insects ; 15(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38667353

RESUMEN

Stable flies, Stomoxys calcitrans, stand as formidable pests with a global impact, inflicting significant economic losses on the livestock sector. Larval development occurs in diverse substrates, including decomposing plant material and manure, while emerged adults pose a threat through blood-feeding on both animals and humans. Conventional chemical control methods, predominantly reliant on insecticides, not only pose environmental risks but also face challenges of resistance among stable fly populations. To address this pressing issue, we propose an integrated pest management (IPM) strategy for stable fly control. This approach involved a combination of sanitary-cultural practices, animal protection, the release of natural enemies targeting immature stages, and a specialized trapping system for adults. The Stomoxycc® trap, designed for mass trapping of adult Stomoxys, was employed alongside the release of the predatory mite Macrocheles robustulus and two wasp parasitoids, Spalangia cameroni and Muscidifurax raptor (under the commercial brands Biomite® and Biowasp®) on animal bedding as a key component of this IPM strategy. The implementation of this initiative has been undertaken at a significant sanctuary for donkeys and mules in western Spain. In this publication, we present the application and results of the IPM strategy utilized and provide insights into its use as a sustainable and environmentally friendly option for controlling stable fly populations.

8.
Insects ; 15(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38667362

RESUMEN

Onion thrips (Thrips tabaci) can pose a significant threat to onion crops, causing leaf damage, reduced bulb size and quality, and yield loss during severe infestations. Conventional insecticide use has been the primary method for managing this pest species, but the efficacy of this approach is inconsistent. Furthermore, emerging pest resistance is a growing concern in some regions. This two-year field study aimed to assess the effectiveness of several pest management strategies in controlling onion thrips populations and limiting their impact on onion yields. The strategies tested consisted of habitat manipulations (including flower strips and straw mulch), biological control agents (Stratiolaelaps scimitus, Neoseiulus cucumeris, Amblyseius swirskii, and Beauveria bassiana), as well as physical barrier control methods (exclusion nets, kaolin, and mineral oil). Habitat manipulation techniques, particularly the use of flower strips, reduced thrips populations by up to 50% and increased onion yields by 25%. In contrast, exclusion nets had a detrimental effect on onion yields, and the other alternative control methods produced results comparable to those obtained for untreated controls. When used alone, biological control agents were not effective at maintaining thrips populations below economically damaging levels. This study offers valuable insights into effective and sustainable pest management practices for the onion industry.

9.
Insects ; 15(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667363

RESUMEN

Spodoptera frugiperda is the preferred host of the parasitoid Telenomus remus. Cold storage can preserve a sufficient quantity of parasitoids and their hosts in a laboratory colony for mass release. First, the effects of cold storage on the reproductive capacity of T. remus reared on non-stored S. frugiperda eggs and the hatching rate of unparasitized S. frugiperda eggs were investigated. Further, the dual effects of cold storage and stored S. frugiperda eggs on the reproductive capacity of T. remus were studied to determine the optimal storage conditions and the maximal shelf life for both the host and the parasitoid. The emergence rate, the number of adults produced, and the female proportion of T. remus were affected by cold storage factors. Pupae stored at 13 °C for 15 days is optimum for T. remus reared on non-stored S. frugiperda eggs. Spodoptera frugiperda eggs could only be stored at 10 °C for five days to be suitable for rearing T. remus. The optimum cold storage conditions for T. remus parasitizing stored eggs were 7 °C for 5 days in the larval stage. The maximal shelf lives of T. remus parasitizing cold-stored S. frugiperda eggs were 10 days. Cold storage affected the hatching rate of S. frugiperda eggs, thereby further affecting the reproductive capacity of T. remus. The findings suggest that different storage conditions should be used when mass-rearing T. remus on stored and non-stored eggs. Telenomus remus should be reproduced using fresh laid S. frugiperda eggs for maximum shelf life.

10.
Insects ; 15(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38667366

RESUMEN

Parental care behavior has evolved as a life history strategy to improve reproductive success, particularly in organisms facing challenging environments. However, the variation in maternal care, such as egg-guarding behavior in response to the social environment and the associated ecological consequence of competition, remains largely unknown. This study addresses a gap in current knowledge by examining the plasticity of maternal care behavior in the predatory mite C. eruditus and its impact on offspring survival and intra- and interspecific competition. Our results demonstrated that the reproductive females frequently exhibit egg-guarding behaviors, with enhanced maternal care efforts when the interspecific competitor is present. Egg masses are significantly more vulnerable to predation in the absence of maternal care. Guarding females increased egg survival rates and adversely influenced the survival of both con- and heterospecific competitors, with higher mortality rates being detected. Our findings highlight the ecological significance of maternal care behaviors and suggest that releasing C. eruditus and Neoseiulus cucumeris (Oudemans) together is not recommended for pest management in storage products.

11.
Insects ; 15(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38667391

RESUMEN

Nesidiocoris tenuis (Hemiptera: Miridae) is a generalist predator commonly used to control the whitefly Bemisia tabaci in Europe. This mirid has been found and established in South Texas, where it was initially observed feeding on nymphs of the psyllid Bactericera cockerelli (Hemiptera: Triozidae) in open tomato fields. B. cockerelli is the vector of the fastidious bacterium "Candidatus Liberibacter solanacearum" that causes diseases in several solanaceous crops, including zebra chip (ZC) disease in potatoes. There is a need to better understand how this predator impacts the control of important crop pests, such as potato psyllids. We assessed the interactions between N. tenuis and B. cockerelli in three different environmental settings. First, we estimated the numeric response of N. tenuis preying on B. cockerelli under laboratory and greenhouse conditions. Second, we evaluated the predator-prey interaction under controlled field cage conditions. Then, we exposed N. tenuis under controlled field release conditions to the natural occurrence of B. cockerelli. Finally, we assessed the compatibility between the use of N. tenuis as a biological control agent in a field study and its impact on ZC disease incidence, severity in potato tubers, and potato yield. Laboratory and greenhouse experiments resulted in diverse types of functional model responses, including exponential and linear mathematical models. Our findings revealed a significant predation effect exerted by N. tenuis, resulting in a reduction of more than fourfold in the number of B. cockerelli nymphs per cage. Specifically, the nymphal population decreased from 21 ± 3.2 in the absence of N. tenuis to 5 ± 1.6 when N. tenuis was present. Furthermore, the combination of N. tenuis with a reduced insecticide program increased potato yields, but only reduced ZC tuber incidence in one of two potato cultivars evaluated, and in one season. Findings from these studies indicate that N. tenuis could be effective as a biological control agent for B. cockerelli in potato production in South Texas. This is the first report of N. tenuis preying on immature stages of any psyllid species.

12.
Insects ; 15(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667420

RESUMEN

The red palm weevil (RPW) is a significant threat to date palms. Conventional pest control has been ineffective. This study aims to evaluate entomopathogenic nematodes (EPNs) indigenous to Saudi Arabia and commercial against RPW. We used 33 soil samples collected from four areas of Saudi Arabia. The indigenous EPNs were isolated and cultured using an insect baiting method to obtain infective juveniles. Pathogenicity bioassays were conducted against different stages of RPW, including eggs, larvae, and adults. The bioassay was performed using all the isolates at 1 × 106 IJ/mL. Distilled water was used as a control. The results revealed that only 9.09% of soil samples contained positive EPNs. Through DNA sequencing analysis, the positive samples were identified as indigenous isolates belonging to Heterorhabditis indica and Steinernema carpocapsae EPN species. In pathogenicity tests, 90% mortality of RPW eggs was observed after five days. Similar mortality trends were seen in RPW larvae and adults, with 90% mortality recorded after ten days for all the EPN treatments. Mortality increased with the duration of post-EPN inoculation exposure. The 1 × 106 IJ/mL concentrations of EPN effectively killed various stages of RPW in the laboratory. More research is needed to test EPNs against RPW in the field.

13.
J Fungi (Basel) ; 10(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38667936

RESUMEN

The biocontrol agent Pythium oligandrum, which is a member of the phylum Oomycota, can control diseases caused by a taxonomically wide range of plant pathogens, including fungi, bacteria, and oomycetes. However, whether P. oligandrum could control diseases caused by plant root-knot nematodes (RKNs) was unknown. We investigated a recently isolated P. oligandrum strain GAQ1, and the P. oligandrum strain CBS530.74, for the control of an RKN Meloidogyne incognita infection of tomato (Solanum lycopersicum L.). Initially, P. oligandrum culture filtrates were found to be lethal to M. incognita second-stage juveniles (J2s) with up to 84% mortality 24 h after treatment compared to 14% in the control group. Consistent with the lethality to M. incognita J2s, tomato roots treated with P. oligandrum culture filtrates reduced their attraction of nematodes, and the number of nematodes penetrating the roots was reduced by up to 78%. In a greenhouse pot trial, the P. oligandrum GAQ1 inoculation of tomato plants significantly reduced the gall number by 58% in plants infected with M. incognita. Notably, the P. oligandrum GAQ1 mycelial treatment significantly increased tomato plant height (by 36%), weight (by 27%), and root weight (by 48%). A transcriptome analysis of tomato seedling roots inoculated with the P. oligandrum GAQ1 strain identified ~2500 differentially expressed genes. The enriched GO terms and annotations in the up-regulated genes suggested a modulation of the plant hormone-signaling and defense-related pathways in response to P. oligandrum. In conclusion, our results support that P. oligandrum GAQ1 can serve as a potential biocontrol agent for M. incognita control in tomato. Multiple mechanisms appear to contribute to the biocontrol effect, including the direct inhibition of M. incognita, the potential priming of tomato plant defenses, and plant growth promotion.

14.
J Fungi (Basel) ; 10(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38667963

RESUMEN

The slow action of fungi is one of the biggest challenges in using entomopathogenic fungi. A promising alternative to reduce the time of action is to combine conidia with extracellular enzymes. This study aimed to characterize the production of Pr1 subtilisin protease and lipases by Beauveria bassiana and Metarhizium anisopliae in different culture media and to evaluate the efficiency of the enzymatic treatment against Aphis gossypii and Spodoptera frugiperda. The isolates were cultivated in five different liquid cultures, and, after 7 days, the culture was filtered and centrifuged, and the activity of the Pr1 and lipases was measured. The fungi cultured in a Luria-Bertani broth medium had the highest activity of proteases and lipases. The mortality of A. gossypii nymphs treated with conidia 7 days after the treatment was 39% (JEF-410), 76.5% (JEF-492), 74.8% (ERL-836), and 70.9% (JEF-214). The B. bassiana JEF-410 supernatant combined with conidia increased the fungal virulence at day 5 and day 6 after treatment. When S. frugiperda larvae were treated with B. bassiana JEF-492 conidia combined with its supernatant, the time of infection was shorter compared to the larvae treated with conidia only. Once the supernatant was incubated at 37 °C, the relative activity decreased from 100% to 80% after 2 h and to 45% after 24 h. The results suggest that the supernatant of entomopathogenic fungi may be formulated and used as a biopesticide in an efficient strategy for the biological control of pests.

15.
Bull Entomol Res ; : 1-12, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629310

RESUMEN

The continuous utilisation of an alternative host may influence parasitoid performance across successive generations due to conditioning in natal hosts. Tetrastichus howardi (Olliff) has successfully been reared using Tenebrio molitor L. pupae as a feasible alternative host. However, the extended rearing of T. howardi on this alternative host may impact the biological features of the parasitoids. Parasitoids were reared using T. molitor pupae for 30 consecutive generations. Quality criteria were assessed during the generations F5, F15, and F30, offering pupae of the target pest, Diatraea saccharalis (Fabr.), and compared with the F0 generation (parasitoids reared in D. saccharalis pupae). Criteria included assessments of parasitism performance, host selection, and wing form variation in the parasitoid wasps. Additionally, we examined the fecundity of T. howardi females that emerged from both hosts, considering their age, egg loading before and after one oviposition, as well as parasitism of sugarcane stalk borer pupae. Rearing T. howardi using pupae of T. molitor did not affect its biological traits or preference for the target pest for 30 generations. After parasitism, the parasitoid left the host pupa inside the stalk, and one oviposition was enough to kill D. saccharalis pupae and obtain viable parasitoid progeny. Female sexual maturation and egg loading occurred 72 and 96 h after parasitoid emergence. Egg-loading recovery after parasitism did not happen within 24 h. T. howardi can be reared for up to 30 generations using alternative hosts without compromising its parasitism performance or egg loading.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38630402

RESUMEN

Biocontrol solutions (macroorganisms, microorganisms, natural substances, semiochemicals) are presented as potential alternatives to conventional plant protection products (PPPs) because they are supposed to have lower impacts on ecosystems and human health. However, to ensure the sustainability of biocontrol solutions, it is necessary to document the unintended effects of their use. Thus, the objectives of this work were to review (1) the available biocontrol solutions and their regulation, (2) the contamination of the environment (soil, water, air) by biocontrol solutions, (3) the fate of biocontrol solutions in the environment, (4) their ecotoxicological impacts on biodiversity, and (5) the impacts of biocontrol solutions compared to those of conventional PPPs. Very few studies concern the presence of biocontrol solutions in the environment, their fate, and their impacts on biodiversity. The most important number of results were found for the organisms that have been used the longest, and most often from the angle of their interactions with other biocontrol agents. However, the use of living organisms (microorganisms and macroorganisms) in biocontrol brings a specific dimension compared to conventional PPPs because they can survive, multiply, move, and colonize other environments. The questioning of regulation stems from this specific dimension of the use of living organisms. Concerning natural substances, the few existing results indicate that while most of them have low ecotoxicity, others have a toxicity equivalent to or greater than that of the conventional PPPs. There are almost no result regarding semiochemicals. Knowledge of the unintended effects of biocontrol solutions has proved to be very incomplete. Research remains necessary to ensure their sustainability.

17.
Microb Pathog ; 191: 106645, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38631412

RESUMEN

Olive knot disease, caused by Pseudomonas savastanoi, poses a significant threat to olive cultivation, necessitating sustainable alternatives to conventional chemical control. This study investigates the biocontrol effectiveness of Bacillus sp. (Og2) and Pseudomonas fluorescens (Oq5), alone and combined, against olive knot disease. Olive plants were sprayed with 5 ml of the bacteria until uniformly wet, with additional application to the soil surface. Pathogen injection occurred 24 h later. The results revealed that treating plants with a combination of both bacteria provided the highest reduction in disease severity (89.58 %), followed by P. fluorescens alone (69.38 %). Significant improvements were observed in shoot height, particularly with the combination of Bacillus sp. and P. fluorescens. The root length of olive seedlings treated with P. fluorescens and Bacillus sp., either alone or in combination, was significantly longer compared to the control and pathogen-treated seedlings. In terms of root dry weight, the most effective treatments were treated with P. fluorescens was the highest (82.94 g) among all treatments followed by the combination of both isolates with seedlings inoculated with P. savastanoi. These findings underscore the potential of Bacillus sp. and Pseudomonas fluorescens as effective biocontrol agents against olive knot disease and promoting olive seedlings growth, providing a sustainable and environmentally friendly approach to disease management.

18.
J Med Entomol ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564417

RESUMEN

Chagas disease is an infectious disease of human and animal health concern, with 6-8 million chronic human infections and over 50,000 deaths throughout the Americas annually. Hematophagous insects of the subfamily Triatominae, also called kissing bugs, vector the protozoan parasite, Trypanosoma cruzi Chagas (Trypanosomatida: Trypanosomatidae), that causes Chagas disease. Despite the large human health burden, Chagas disease is a neglected tropical disease with inadequate funding for research and preventive practices. Given the resource-poor environment of most agencies trying to protect public health, it is critical to consider all control options for reducing vector populations and the risk of human exposure to T. cruzi to identify the most appropriate tools for each context. While numerous triatomine control methods exist, the literature lacks a compilation of the strategies used, a critical examination of their efficiency, and a particular focus on triatomine control in the United States compared to elsewhere in the Americas. Here, we present a review of the literature to assess historical intervention strategies of existing and developing triatomine control methods. For each method, we discuss progress in the field, future research to further advance the method, and limitations. While we found that pyrethroid insecticide is still the most commonly used method of triatomine and Chagas disease control, we suggest that complementing these techniques with alternative control methods in development will help to achieve Chagas disease reduction goals.

19.
J Econ Entomol ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568949

RESUMEN

In this study, we investigated the biological aspects and predation efficiency of 3 aphidophagous ladybird beetles, Coccinella novemnotata, Hippodamia variegata, and Coccinella septempunctata, on the cotton aphid, Aphis gossypii, reared on cucumber plants (Cucumis sativus L. cultivar barracuda) under laboratory conditions. The developmental periods of C. novemnotata, H. variegata, and C. septempunctata were observed to be 16.00 ±â€…0.25, 16.00 ±â€…0.25, and 20.58 ±â€…0.40 days, respectively. The larvae of these ladybird beetles consumed an average of 218.93 ±â€…8.86, 254.77 ±â€…8.86, and 537.36 ±â€…10.49 aphids, respectively. Fourth-instar larvae were particularly efficient, consuming 53.68%, 52.68%, and 52.64% of total aphids for C. novemnotata, H. variegata, and C. septempunctata, respectively. Adult emergence rates were promising, with 91.67%, 100.00%, and 92.86%, accompanied by sex ratios of 63.64%, 53.84%, and 61.54%, respectively. Notably, a single female of C. novemnotata, H. variegata, and C. septempunctata consumed an average of 2,215.30, 2,232.00, and 3,364.50 aphids, respectively, over its lifespan. Coccinella septempunctata demonstrated the highest predation efficiency among the 3 species, suggesting its potential for biological control of A. gossypii in both open fields and greenhouses, promoting sustainable agricultural practices.

20.
Phytopathology ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38648089

RESUMEN

Cover crops, a soil conservation practice, can contribute to reducing disease pressure caused by Pseudomonas syringae, considered one of the most important bacterial plant pathogens. We recently demonstrated that phyllosphere (leaf surface) bacterial community structure changed when squash (Cucurbita pepo) was grown with a rye (Secale cereale) cover crop treatment, followed by a decrease of angular leaf spot (ALS) disease symptoms on squash caused by P. syringae pv. lachrymans. Application of biocontrol agents is a known agricultural practice to mitigate crop losses due to microbial disease. In this study, we tested the hypothesis that some phyllosphere bacteria promoted when squash are grown on cover crops could be isolated and used as a biocontrol agent to decrease ALS symptoms. We grew squash during a two-year field experiment using four agricultural practices: bare soil, cover crops, chemically terminated cover crops, and plastic cover. We sampled squash leaves at 3 different dates each year and constructed a collection of cultivable bacterial strains isolated from squash leaves and rye cover crop material. Each isolated strain was identified by 16S rRNA gene sequencing and used in in vitro (Petri dish) pathogen growth and in vivo (greenhouse) symptom control assays. Four bacterial isolates belonging to the genera Pseudarthrobacter, Pseudomonas, Delftia and Rhizobium were shown to inhibit P. syringae pv. lachrymans growth and ALS symptom development. Strikingly, the symptom control efficacy of all strains was stronger on older leaves. This study sheds light on the importance of bacterial isolation from cover crops sources to promote disease control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...